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Abstract
From extensive numeric diagonalizations of the SU(3) Perk–Schultz
Hamiltonian with a special value of the anisotropy and different boundary
conditions, we have observed simple regularities for a significant part of its
eigenspectrum. In particular, the ground-state energy and nearby excitations
belong to this part of the spectrum. Our simple formulae describing these
regularities recall, apart from some selection rules, the eigenspectrum of the
free-fermion model. Based on the numerical observations we formulate several
conjectures. Using explicit solutions of the associated nested Bethe-ansatz
equations, guessed from an analysis of the functional equations of the model,
we provide evidence for some of them.

PACS numbers: 75.10.Jm, 02.30.Ik, 02.30.Sa, 02.60.−x, 05.50.+q

1. Introduction

Since the pioneering work of Bethe in 1931 the Bethe ansatz and its generalizations have
proved to be quite efficient tools in the description of the eigenvectors of a huge variety of
one-dimensional quantum chains and two-dimensional transfer matrices (see, e.g., [1] for
reviews). Models with wavefunctions given by this ansatz are considered exactly integrable.
According to the Bethe ansatz the amplitudes of the wavefunctions are expressed in terms of
a sum of plane waves whose wavenumbers are given in terms of non-linear and highly non-
trivial coupled equations known as the Bethe-ansatz equations (BAEs). In several cases these
equations, thanks to some appropriate guessing on the topology of roots, are solvable in the
thermodynamic limit, providing understanding of large-distance physics.

However the exact integrability is a property independent of the lattice size and the exact
solution of the associated BAE for finite chains is an important step toward the complete
mathematical and physical understanding of these models. Due to the complexity of the BAE, to
our knowledge, only in two special cases are some of the solutions known analytically, namely,
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the trivial free-fermion case and theXXZ chain at the special anisotropy� = −1/2 [2,3]. The
solution in this last case is obtained by exploring the functional relations of the model [3]. Even
in the last case, although several exact properties of the wavefunction have been conjectured [4],
a complete and closed calculation of their amplitudes is still missing. In this paper we are going
to present a new set of analytical solutions of BAEs for finite chains. These solutions correspond
to BAEs of the anisotropic SU(3)Perk–Schultz model [5], or the anisotropic SU(3)Sutherland
model [6], at a special value of the anisotropy. In contrast to the XXZ case, the Bethe ansatz
for this model is of nested type and the solutions will be derived by generalizing the functional
method originally applied to the XXZ chain.

The paper is organized as follows. In section 2 we give the main definitions and formulate
the corresponding BAE. In section 3 we state a set of conjectures that were obtained from
extensive ‘experimental’ work on exact brute-force diagonalizations of the quantum chains.
In section 4 we derive, for the Hamiltonian with periodic boundary conditions, the functional
relations, and at a special value of the anisotropy some solutions for the eigenspectra are
derived. In section 5 we present and test directly a set of solutions of the BAEs, and explain
partially the conjectures announced in section 3. Finally in section 6 we present our conclusions
and a summary of our results.

2. The SU (3) Perk–Schultz model

The SU(3) Perk–Schultz model [5] is the anisotropic version of the SU(3) Sutherland
model [6], with the Hamiltonian, in an L-site chain, given by

Hp
q =

L−1∑
j=1

Hj,j+1 + pHL,1 (p = 0, 1),

where

Hi,j = −
1∑
a=0

2∑
b=a+1

(Eabi E
ba
j + Ebai E

ab
j − qEaai Ebbj − 1/qEbbi E

aa
j ). (1)

The 3 × 3 matrices Eab have elements (Eab)cd = δac δ
b
d and q = exp(iη) is the anisotropy

of the model. The cases of free and periodic boundary conditions are obtained by setting
p = 0 and p = 1 in (1), respectively. This Hamiltonian describes the dynamics of a system
containing three classes of particles (0, 1, 2) with on-site hard-core exclusion. At q = 1 the
model is SU(3) symmetric and for q �= 1 the model has a U(1)

⊗
U(1) symmetry due to the

conservation of the number of particles of each species. Consequently we can separate the
Hilbert space into block disjoint sectors labelled by (n0, n1, n2), where ni = 0, 1, . . . , L is the
number of particle of species i (i = 0, 1, 2). The Hamiltonian has an S3 symmetry due to its
invariance under the permutation of distinct species, that implies that all the energies can be
obtained from the sectors (n0, n1, n2), where n0 � n1 � n2 and n0 + n1 + n2 = L. Moreover
in the special case of free boundaries (p = 0), the quantum chain (1) is also invariant under
the additional quantum SU(3)q symmetry implying that all energies in the sector (n′

0, n
′
1, n

′
2)

with n′
0 � n′

1 � n′
2 are degenerate with the energies belonging to the sectors (n0, n1, n2) with

n0 � n1 � n2, if n′
0 � n0 and n′

0 + n′
1 � n0 + n1.

The eigenenergies of the Hamiltonian (1) for p = 0 or 1 in the sector (n0, n1, n2) are
given by

E = −
n0+n1∑
j=1

(
−q − 1

q
+

sin(uj − η/2)
sin(uj + η/2)

+
sin(uj + η/2)

sin(uj − η/2)
)
, (2)
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where the variables {uj , j = 1, 2, . . . , n0 + n1} and the auxiliary variables {vj , j =
1, 2, . . . , n0} are the roots of the coupled Bethe ansatz. These BAEs are of nested type and in
the case of periodic boundary they are given by (see e.g. [7, 8])[

sin(uk + η/2)

sin(uk − η/2)
]L

= −
n0+n1∏
i=1

sin(uk − ui + η)

sin(uk − ui − η)
n0∏
j=1

sin(uk − vj − η/2)
sin(uk − vj + η/2)

,

n0∏
i=1

sin(vl − vi + η)

sin(vl − vi − η)
n0+n1∏
j=1

sin(vl − uj − η/2)
sin(vl − uj + η/2)

= −1,

(3)

where k = 1, . . . , n0 + n1 and l = 1, . . . , n0.
In the case of free boundary the BAEs are given by [9][

sin(uk + η/2)

sin(uk − η/2)
]2L n0∏

i=1

sin(uk + vi + η/2) sin(uk − vi + η/2)

sin(uk + vi − η/2) sin(uk − vi − η/2)

=
n0+n1∏
j=1,j �=k

sin(uk + uj + η) sin(uk − uj + η)

sin(uk + uj − η) sin(uk − uj − η) ,
n0∏

i=1,i �=l

sin(vl + vi + η) sin(vl − vi + η)

sin(vl + vi − η) sin(vl − vi − η) =
n0+n1∏
j=1

sin(vl + uj + η/2) sin(vl − uj + η/2)

sin(vl + uj − η/2) sin(vl − uj − η/2) ,

(4)

where k = 1, . . . , n0 +n1 and l = 1, . . . , n0. In the case of periodic boundaries the momentum
P = 2πl/L (l = 0, 1, . . . , L− 1) of the associated eigenstate is given by

exp(iP) =
n0+n1∏
k=1

sin(uk − η/2)
sin(uk + η/2)

. (5)

The solutions of the BAEs will provide the eigenenergies of (1) if they correspond to
non-zero norm Bethe states. The combinatory nature of the Bethe wavefunctions implies that
solutions of (3) or (4) with coinciding roots produce null states. Nevertheless the requirement
of non-coinciding roots does not necessarily ensure a genuine eigenvector, since conspicuous
cancellation, even in this case, can render a vector with null norm. Although all eigenenergies
of the Hamiltonian can be obtained, apart from predicted degeneracies, by restricting to the
sectors (n0, n1, n2) with n0 � n1 � n2, the Bethe ansatz implementation in its coordinate
version is valid for arbitrary values of n0, n1, n2. However, as we shall see in section 5,
several solutions with non-coinciding roots for sectors out of the range n0 � n1 � n2, but
corresponding to the null state, can be obtained. In fact even in the XXZ chain, where the
BAEs are simpler, solutions with non-coinciding roots3 that correspond to null-norm states
can be obtained when the number of roots n is out of the range n � L/2. In the case of the
BAE for theXXZ chain, in a recent paper [11] Baxter gives strong evidence that with suitable
parametrization the entire eigenspectra can be obtained from the non-coinciding roots of the
associated BAE in the sector with the number of roots n � L/2. In a similar way we are going
to assume in this paper that all distinct eigenenergies of (1) can be obtained from the solutions
{ui}, {vi}, with non-coinciding values in the sectors when n0 � n1 � n2. Conversely, solutions
in sectors out of this range should necessarily be degenerate with energies occurring in sectors
within the range, if they do not correspond to zero-norm states.

3. Conjectures merged from numerical studies

In this section we state a series of conjectures that are consistent with the exact brute-force
diagonalization of the Hamiltonian (1) with free (p = 0) and periodic (p = 1) boundary
3 We have found, for example, a continuous set of non-coinciding roots of the BAE for the periodicXXZ withL = 4
sites and n = 3. All this set of solutions give us zero eigenvectors (see also [10] for further considerations).
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condition at q = exp(2iπ/3). Some of these conjectures will be proved in the following
sections. Let us consider separately the case of periodic and free boundaries.

3.1. Periodic chain

Conjecture 1. The Hamiltonian (1) with L sites at q = exp(2iπ/3) has eigenvectors (not all
of them) with energy and momentum given by

EI = −
∑
j∈I

(
1 + 2 cos

2πj

L

)
, (6)

PI = 2π

L

∑
j∈I
j, (7)

with I being a subset of I unequal elements of the set {1, 2, . . . , L}. The number I has to be
odd, I = 2k+1, and the sector of appearance of the above levels is Sk ≡ (k, k+1, L−2k−1),
0 � k � (L− 1)/2.

The lowest eigenenergy among the above conjectured values (6) is obtained for the
particular set I (k)0 = {1, 2, . . . , k} ∪ {L − k, . . . , L}, since in this case all contributions
−[1 + 2 cos(2πj/L)] to (6) have the lowest possible values. The corresponding eigenstate
has zero momentum and energy given by

E
(k)
0 = −

∑
j∈I (k)0

(
1 + 2 cos

2πj

L

)
= −2k − 1 − 2

sin(π(2k + 1)/L)

sin(π/L)
. (8)

Conjecture 2. For arbitrary L = 3n + l (l = 1, 2, 3), the eigenenergy E(n)0 is the lowest one
in the sector Sn; moreover, if l �= 3 (L �= 3n), it is the ground-state energy of the model.

3.2. Free boundaries

In order to state our conjectures let us define again the special set of sectors of the
Hamiltonian (1) with p = 0:

Sk =
(

Int

(
k

2

)
, Int

(
k + 1

2

)
, L− k

)
, k = 0, 1, . . . , L. (9)

Due to the quantum symmetry SU(3)q , distinct sectors show the same eigenenergies. For
example, for L = 7 the sectors are

S0 = (0, 0, 7) S1 = (0, 1, 6)
S2 = (1, 1, 5) S3 = (1, 2, 4)
S4 = (2, 2, 3) S5 = (2, 3, 2)
S6 = (3, 3, 1) S7 = (3, 4, 0)

and we have a special ordering

S0 ⊂ S1 ⊂ S2 ⊂ S3 ⊂ S4 ≡ S5 ⊃ S6 ⊃ S7. (10)

This means that, for example, all eigenvalues in sector S2 can also be found in sectors S3, S4

and S5, and on the other hand all eigenvalues in sector S7 also appear in sectors S6, S5 and S4.
Sectors S4 and S5 are totally equivalent. In this example, let us call the sectors S0, S1, S2, S3, S4

the left sectors and S5, S6, S7 the right ones. This can be directly generalized to anyL = 3n+1
or L = 3n + 2, obtaining L − n left sectors and n + 1 right ones. In the case where L = 3n
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the sectors Sk with k = 0, 1, . . . , 2n− 1 and k = 2n + 1, . . . , L are the left and right sectors,
respectively. The sector S2n = (n, n, n) is degenerate with two sectors S2n−1 = (n−1, n, n+1)
and S2n+1 = (n, n + 1, n − 1) (S2n−1 ≡ S2n+1) and can be considered as either a left or right
sector. We now state the conjecture.

Conjecture 3. Let L = 3n + l (l = 0, 1, 2). Then the Hamiltonian (1) with free boundaries
(p = 0 at q = exp(2iπ/3) has eigenvectors with energies given by

EI = −
∑
j∈I

(
1 + 2 cos

πj

L

)
, (11)

with I an arbitrary subset formed by k distinct elements of the set {1, 2, . . . , L−1}. Moreover,
if Sk is a left sector then these eigenvalues appear in the sectors Sk, Sk+1, . . . , SL−n (SL−n+1 for
l = 0), and if Sk is a right sector the eigenvalues appear in the sectors SL−n−1, SL−n, . . . , Sk+1.

As a consequence of conjecture 3 the Hamiltonian (1) has the special eigenvalues

E(k) = −
k∑
j=1

(
1 + 2 cos

πj

L

)
= 1 − k − sin(π(2k + 1)/2L)

sin(π/2L)
(12)

and we are now in a position to formulate a remarkable conjecture.

Conjecture 4. The lowest energy in the sector Sk is E(k) or E(k−1) if Sk is a left or a right
sector respectively.

The minimal value ofE(k) is obtained for k = L−n−1 and our ‘numerical experiments’
induce the conjecture:

Conjecture 5. The ground-state energy of the Hamiltonian (1) with free boundary at q =
exp(2iπ/3) is given by

E0 = E(L−n−1) = 2 − L + n− sin(π(2n + 1)/2L)

sin(π/2L)
. (13)

4. Functional relations for the anisotropic SU (3) Perk–Schultz model

We are going to obtain analytically some of the conjectured results presented in the previous
section. Let us consider initially the periodic case when p = 1 in the Hamiltonian (1). The
eigenenergies in the sectors with ‘particle numbers’ (n0, n1, n2) are given by (2) where the
Bethe roots {uj , j = 1, 2, . . . , n0 + n1 ≡ m2} and {vj , j = 1, 2, . . . , n0 ≡ m1} are obtained
by solving the BAEs (3). Below, to simplify the notation, we write λ(1)j and λ(2)j instead of vj
and uj , respectively.

Defining the pair of sine polynomials

Ql(λ) =
ml∏
j=1

sin(λ− λ(l)j ), l = 1, 2, (14)

the BAEs (3) can be rewritten as

Q1(λ
(1)
j + η)Q2(λ

(1)
j − η/2) +Q1(λ

(1)
j − η)Q2(λ

(1)
j + η/2) = 0 (j = 1, 2, . . . , m1),

(15)

sinL(λ(2)k + η/2)Q1(λ
(2)
k + η/2)Q2(λ

(2)
k − η) + sinL(λ(2)k − η/2)

×Q1(λ
(2)
k − η/2)Q2(λ

(2)
k + η) = 0 (k = 1, 2, . . . , m2). (16)
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Since from the definitions (14) Ql(λ
(l)
j ) = 0 for any Bethe roots λ(l)j (l = 1, 2), we should

have the functional relations

Q1(λ + η)Q2(λ− η/2) +Q1(λ− η)Q2(λ + η/2) = T2(λ)Q1(λ), (17)

sinL(λ + η/2)Q1(λ + η/2)Q2(λ−η) + sinL(λ− η/2)Q1(λ− η/2)Q2(λ + η) = T1(λ)Q2(λ),

(18)

where T2(λ) and T1(λ) are unknown sine polynomials of order m2 and L + m1, respectively.
Shifting λ→ λ∓ η/2 in (17) and inserting the result in (18) we obtain

sinL(λ∓ η/2)Q2(λ± η) + sinL(λ± η/2)T2(λ∓ η/2)}Q1(λ∓ η/2)
= sinL(λ± η/2)Q1(λ∓ 3η/2) + T1(λ)}Q2(λ). (19)

We now suppose thatQ1(λ± η/2) andQ2(λ) have no common roots; in this case

sinL(λ∓ η/2)Q2(λ± η) + sinL(λ± η/2)T2(λ∓ η/2)} = T ±(λ)Q2(λ), (20)

sinL(λ± η/2)Q1(λ∓ 3η/2) + T1(λ) = T ±(λ)Q1(λ∓ η/2), (21)

where T ±(λ) are sine polynomials4 of degree L. The subtraction of equations (21) among
themselves gives us

sinL(λ + η/2)Q1(λ− 3η/2)− T +(λ)Q1(λ− η/2)
+ T −(λ)Q1(λ + η/2)− sinL(λ− η/2)Q1(λ + 3η/2) = 0. (22)

Similarly both equations (20) give us the relation

sinL(λ) sinL(λ + η)Q2(λ− 3η/2)− sinL(λ + η)T −(λ− η/2)Q2(λ− η/2)
+ sinL(λ− η)T +(λ + η/2)Q2(λ + η/2)

− sinL(λ) sinL(λ− η)Q2(λ + 3η/2) = 0. (23)

Up to now our relations are valid for arbitrary values of the anisotropy η and we now are going
to restrict to the particular case η = 2π/3 (q = exp(2iπ/3), where the several conjectures
announced in section 3 were expected to be valid. At this special value of the anisotropy we
have the symmetry

Ql(λ− 3η/2) = Ql(λ− π) = Ql(λ + π) = Ql(λ + 3η/2) l = 1, 2, (24)

and equations (22) and (23) are given by

φ(λ)Q1(λ− π)− T +(λ)Q1(λ− π/3) + T −(λ)Q1(λ + π/3) = 0, (25)

and

− sinL(λ)φ(λ− π)Q2(λ− π)− sinL(λ + 2π/3)T −(λ− π/3)Q2(λ− π/3)
+ sinL(λ− 2π/3)T +(λ + π/3)Q2(λ + π/3) = 0, (26)

where

φ(λ) = sinL(λ + π/3)− sinL(λ− π/3). (27)

The shift λ→ λ± 2π/3 in (25) and (26) shows that these equations are equivalent to the
linear matrix equations∣∣∣∣∣∣

φ(λ) −T +(λ) T −(λ)
T −(λ + 2π/3) φ(λ + 2π/3) −T +(λ + 2π/3)

−T +(λ− 2π/3) T −(λ− 2π/3) φ(λ− 2π/3)

∣∣∣∣∣∣
∣∣∣∣∣∣
Q1(λ− π)
Q1(λ− π/3)
Q1(λ + π/3)

∣∣∣∣∣∣ = 0, (28)

4 These polynomials are the eigenvalues of the transfer matrices corresponding to the fundamental representations
of SU(3) in the auxiliary space.



The finite-size SU(3) Perk–Schultz model with deformation parameter q = exp(2iπ/3) 3811

and∣∣∣∣∣∣
φ(λ− π) T −(λ− π/3) −T +(λ + π/3)

−T +(λ− π) −φ(λ− π/3) T −(λ + π/3)

T −(λ− π) −T +(λ− π/3) φ(λ + π/3)

∣∣∣∣∣∣
∣∣∣∣∣∣
Q̃2(λ− π)
Q̃2(λ− π/3)
Q̃2(λ + π/3)

∣∣∣∣∣∣ = 0 (29)

respectively. In (29) we defined the new function Q̃2(λ) = sinL(λ)Q2(λ). It is clear that
T2(λ + π) = T2(λ− π) and consequently from (20) T±(λ + π) = T±(λ− π). Equations (28)
and (29) imply that non-trivial solutions are obtained if the determinants of the matrices
appearing in these equations vanish. Actually, by shifting λ → λ + π in the determinant
from (29) we clearly see that this last determinant vanishes if that from (28) also vanishes.

The calculation of the general solutions T ±(λ) that render a null determinant is a quite
difficult task; however, simple solutions can be obtained (rank 1) by imposing a proportionality
between the columns of the matrix generating the determinant5, i.e.

φ(λ)

−T +(λ)
= T −(λ + 2π/3)

φ(λ + 2π/3)
= −T +(λ− 2π/3)

T −(λ− 2π/3)
,

−T +(λ)

T −(λ)
= φ(λ + 2π/3)

−T +(λ + 2π/3)
= −T −(λ− 2π/3)

φ(λ− 2π/3)
.

(30)

We can verify that the above relations are equivalent to the independent equations

T +(λ)T −(λ + 2π/3) = −φ(λ)φ(λ + 2π/3), (31)

T +(λ)T +(λ− 2π/3) = φ(λ)T −(λ− 2π/3). (32)

In order to find solutions of these last equations, it will be useful to use the general relation

aL − bL =
L∏
j=1

(a − ωjb), ω = exp(2π i/L) (33)

to write

φ(λ) = sinL(λ + π/3)− sinL(λ− π/3) =
L∏
l=1

fl(λ), (34)

where

fl(λ) = sin(λ + π/3)− ωl sin(λ− π/3) (l = 1, . . . , L). (35)

Now consider any subset I of non-repeated integers of the set I0 = {1, 2, . . . , L}, and the
complementary subset Ī , such that I

⊕
Ī = I0. We may try to solve (31) and (32) by the

ansatz

T ±(λ) = t±0
∏
l∈I
fl(λ± 2π/3)

∏
m∈Ī
fm(λ), (36)

where t±0 are unknown constants. This ansatz implies

T +(λ)T −(λ + 2π/3) = t+0 t−0
L∏
l=1

fl(λ + 2π/3)
L∏
m=1

fm(λ) = t+0 t−0 φ(λ + 2π/3)φ(λ), (37)

where (34) was used in the last equality. Equation (31) implies the constraint

t+0 t
−
0 = −1. (38)

5 The idea to consider decreased rank in the functional relations was used previously in [12] to explain simple energy
levels of a special case of the XXZ chain.
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Also from (35) and (33)

T +(λ)T +(λ− 2π/3) = (t+0 )2φ(λ)
∏
l∈I
fl(λ + 2π/3)

∏
m∈Ī
fm(λ− 2π/3)

= (t+0 )2φ(λ)T −(λ− 2π/3)/t−0 , (39)

and (32) implies, by using (38), that

(t−0 )
3 = 1, t+0 = −1/t−0 . (40)

Then the ansatz (35) with (38) gives us a set of solutions for T ±(λ), that when inserted in the
matrix equations (28) and (29) will provide the functionsQ1(λ) andQ2(λ). The zeros of these
last functions are the Bethe-ansatz roots and the eigenenergies are calculated by using in (2)
the roots of Q2(λ). Instead of calculating the energies through this procedure, we are going
to calculate them using the transfer matrix eigenvalues T −(λ). From (2) and the definition of
Q2(λ) it is not difficult to obtain the relation

E =
√

3

2

d

dλ
ln

(
Q2(λ)

Q2(−λ)
)∣∣∣∣
λ=π/3

. (41)

On the other hand let us expand (23) with η = 2π/3 for λ = η + ε, ε � 1. The terms of the
lowest order give us the relation

d

dλ
ln

(
Q2(λ)

Q2(−λ)
)∣∣∣∣
λ=π/3

= − L√
3

− d

dλ
ln T −(λ)|λ=π/3, (42)

that from (41) provides the simple result

E = −L
2

−
√

3

2

d

dλ
ln T −(λ)|λ=π/3. (43)

The eigenenergies associated with our solutions T −(λ) are then obtained by inserting (36)
in (43), and we obtain after some simple algebraic manipulations

E = −L +
∑
m∈Ī

(
1 + 2 cos

(
2πm

L

))
= −

∑
l∈I

(
1 + 2 cos

(
2πl

L

))
, (44)

where we used the formula

∑
l∈I∪Ī

(1 + 2 cos(2πl/L)) =
L∑
l=1

(1 + 2 cos(2πl/L)) = L. (45)

Also the zero-order term in the same expansion of (23) gives us

T −(π/3)
sinL(2π/3)

= Q2(π/3)

Q2(−π/3) =
m2∏
k=1

sin(uk − η/2)
sin(uk + η/2)

= exp(iP), (46)

where from (5) P is the momentum associated with our solution T −(λ) given in (36).
Inserting (36) into (46) we obtain after some simple calculations

exp(iP) = (−1)L+1t−0 exp

(
−2π i

L

∑
m∈Ī
m

)
= t−0 exp

(
2π i

L

∑
l∈I
l

)
, (t−0 )

3 = 1. (47)
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5. Analytic solutions of the Bethe-ansatz equations

As we discussed in the previous section, at least in the periodic case, the Bethe-ansatz roots,
corresponding to the eigenenergies (44) we observed, can be obtained from the expansion of
Q2(λ) given in (14), derived by solving (29) with T ±(λ) given by the ansatz (36). Distinctly
in this section we are going to present in a direct way a set of guessed solutions {ui, vj } of
the BAEs that gives the energies conjectured in section 3. We show that they are correct by
a direct substitution into the BAEs. We present solutions of the BAEs for the periodic and
free-boundary cases. As we conjectured in section 3, in the case of periodic boundaries there
exist some selection rules in the spectrum composition (see conjecture 1). At the end of this
section we are going to explain partially this conjecture.

Let us consider separately the periodic and free-boundary cases.

5.1. Periodic case

The BAEs (3) at η = 2π/3, expressed in terms of the variables

xk = sin(uk − π/3)
sin(uk + π/3)

, yl = sin(vl − π/3)
sin(vl + π/3)

, (48)

with k = 1, 2, . . . , n0 + n1 and l = 1, 2, . . . , n0, are given by

(−1)n1+1
n0∏
j ′=1

1 + yj + yjyj ′

1 + yj ′ + yjyj ′

n0+n1∏
k′=1

1 + yj + yjxk′

1 + xk′ + yjxk′
= 1, (j = 1, 2, . . . , n0) (49)

and

(−1)n1+1
n0∏
j ′=1

1 + xk + xkyj ′

1 + yj ′ + xkyj ′

n0+n1∏
k′=1

1 + xk + xkxk′

1 + xk′ + xkxk′
= xLk (k = 1, 2, . . . , n0 + n1). (50)

Let us fix 2n0 + n1 = L. Our guessed solutions are obtained by considering {xh, yl}
(k = 1, . . . , n0 + n1, l = 1, . . . , n0) as an arbitrary permutation of {ω,ω2, . . . , ωL}, where
ω = exp(2π i/L). In this case, the left-hand side of equation (49) takes the form

(−1)L+1
L∏
l=1

1 + yj + yjωl

1 + ωl + yjωl
. (51)

Using the identity (33) and the fact that yLj = 1 we can rewrite this product as

(−1)L+1
(1 + yj )L + (−1)L+1yLj

1 + (−1)L+1(1 + yj )L
= 1. (52)

It is evident that the second BAE is also satisfied due to equality xLk = 1.
Consequently we have found a subclass of solutions for the nested BAEs. These solutions

are characterized by the subset I with unequal elements of the set I0 = {1, 2, . . . , L}, and have
the energy

EI = −
n0+n1∑
k=1

(1 + xk + x−1
k ) = −

∑
l∈I
(1 + 2 cos(2πl/L)) (53)

and momentum

PI =
n0+n1∑
k=1

1

i
ln(xk) = 2π

L

∑
l∈I
l. (54)

Comparing the above relations with relations (6) and (7) we verify that our guessed solutions are
consistent with conjecture 1. It is not clear however whether the corresponding wavefunction
is not a zero vector.
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5.2. Free-boundary case

The BAEs (4) at η = 2π/3, expressed in terms of the same variables xk and yl with
k = 1, 2, . . . , n0 + n1 and l = 1, 2, . . . , n0, are given by

n0∏
j ′=1,j ′ �=j

(
1 + yj + yjyj ′

1 + yj ′ + yjyj ′

)(
yj + yj ′ + yjyj ′

1 + yj + yj ′

) n0+n1∏
k′=1

(
1 + yj + yjxk′

1 + xk′ + yjxk′

)(
yj + xk′ + yjxk′

1 + yj + xk′

)
= 1

(j = 1, 2, . . . , n0) (55)

and
n0∏
j ′=1

(
1 + xk + xkyj ′

1 + yj ′ + xkyj ′

)(
xk + yj ′ + xkyj ′

1 + xk + yj ′

) n0+n1∏
k′=1,k′ �=k

(
1 + xk + xkxk′

1 + xk′ + xkxk′

)(
xk + xk′ + xkxk′

1 + xk + xk′

)
= x2L

k

(k = 1, 2, . . . , n0 + n1). (56)

Now let us fix 2n0 + n1 = L − 1. Our guessed solutions are now given by the set {xk, yl}
(k = 1, . . . , n0 +n1; l = 1, . . . , n0) formed by an arbitrary permutation of {ω,ω2, . . . , ωL−1},
where ω = exp(iπ/L). Using the identity

L−1∏
m=1

(a + ωm)(1/a + ωm)

(b + ωm)(1/b + ωm)
= bL−1

aL−1

(b2 − 1)

(a2 − 1)

(a2L − 1)

(b2L − 1)
, (57)

and the fact that yLi = 1 we can easily verify that the BAEs (55) and (56) are satisfied.
As in the periodic case, we have found a subclass of solutions for the nested BAEs. These

solutions are characterized by a subset I ⊂ {1, 2, . . . , L− 1} and have the energy

EI = −
n0+n1∑
k=1

(1 + xk + x−1
k ) = −

∑
l∈I
(1 + 2 cos(πl/L)). (58)

All these solutions are consistent with conjecture 3, so we think that corresponding Bethe
wavefunction is not a zero vector.

Finally, in order to conclude this section, we intend to explain partially the selection rules
formulated in conjecture 1 for the periodic case. We are going to do this by exploiting our
solutions (36) for T ±(λ) of the functional relations of section 4 with the help of some ideas
developed in the papers [10].

Inserting our solutions (36) for T ±(λ) into equation (25) we obtain
L∏
l=1

fl(λ)Q1(λ− π)− t+0
∏
l∈I
fl(λ + 2π/3)

∏
m∈Ī
fm(λ)Q1(λ− π/3)

+ t−0
∏
l∈I
fl(λ− 2π/3)

∏
m∈Ī
fm(λ)Q1(λ + π/3) = 0. (59)

Dividing by the common factor
∏
m∈Ī fm(λ) we obtain

F1(λ)Q1(λ− π) +-F1(λ + 2π/3)Q1(λ− π/3) +-2F1(λ− 2π/3)Q1(λ + π/3) = 0, (60)

where

- = −t+0 (-3 = 1) and F1(λ) =
∏
l∈I
fl(λ). (61)

On the other hand the solution (36) for T ±(λ) brings (25) into a similar functional equation:

F2(λ)Q2(λ− π) +-2F2(λ + 2π/3)Q2(λ− π/3) +-F2(λ− 2π/3)Q2(λ + π/3) = 0, (62)

where

F2(λ) = sinL λ
∏
m∈Ī
fm(λ). (63)
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Let us consider the case where L �= 3n. In this case since P = (2π/L)j (j =
0, . . . , L− 1), equation (47) gives t−0 = 1, and consequently - = 1 in (60) and (62).

We intend to argue now that there exist pairs {Q1(λ),Q2(λ)} satisfying (60) and (62) with
- = 1 which lead to ‘physical’ solutions for the nested BAE (3), i.e. solutions which are inside
the usual bounds n0 � n1 � n2 or equivalently

degQ1 � degQ2 − degQ1 � L− degQ2. (64)

First of all, we have special solutions for (60) and (62) which can be written as

Q1(λ) = Q1spec(λ) =
∏
m∈Ī
fm(λ + π), Q2(λ) = Q2spec(λ) =

∏
l∈I
fl(λ + π). (65)

Let us check these formulae, inserting them into equations (60) and (62). The left-hand
side of equation (60) becomes (see (34))∏
l∈I
fl(λ) >

∏
m∈Ī
fm(λ) +

∏
l∈I
fl(λ + 2π/3)

∏
m∈Ī
fm(λ + 2π/3)

+
∏
l∈I
fl(λ− 2π/3)

∏
m∈Ī
fm(λ− 2π/3)

= sinL(λ + π/3)− sinL(λ− π/3) + sinL(λ + π)

− sinL(λ + π/3) + sinL(λ− π/3)− sinL(λ− π) = 0.

Similarly the left-hand side of equation (62) becomes

sinL(λ)(sinL(λ + π/3)− sinL(λ− π/3)) + sinL(λ + 2π/3)(sinL(λ + π)− sinL(λ + π/3))

+ sinL(λ− 2π/3)(sinL(λ− π/3)− sinL(λ− π)) = 0.

Let 0 � I � L be the number of elements of the set I , then the degrees of these special
solutionsQ1 andQ2 are L− I and I respectively. Inequalities (64) for these pairs become

L− I � 2I − L � L− I, (66)

which is the same as the equality 2L = 3I. This is not enough for our purposes, especially
for L �= 3n, so we have to look for additional solutions. These do exist due to the fact that the
matrices in equations (28) and (29) forQ1 andQ2 have rank 1.

According to the analysis of functional equations of type (60) or (62) made in some
previous papers [10] it was noticed that equations of this type have some conjectured properties
that we are going to accept. If in (60) or (62) Fi(λ) (i = 1, 2) have a trigonometric form
Fi(λ) = ∏N

j=1 sin(λ− aj ), of degreeN , in general there exists a trigonometric solution of the
formQi(λ) = ∏m

j=1 sin(λ−bj ) of degreem. This degree depends on the value of- appearing
in the equation. In particular if - = 1 then m = N/2 + 1 for N even and m = (N − 1)/2 for
N odd. Only for special choices of Fi(λ) can this degree be decreased. We call these solutions
Q1gen,Q2gen general ones.

Due to (61) and (63) we have degF1(λ) = I and degF2(λ) = 2L − I. If we choose I
even then 2L− I is also even and the equations (60) and (62) have trigonometric solutions for
Q1 andQ2, with degQ1 = I/2 + 1 and degQ2 = (2L− I)/2 + 1. On the other hand for odd
values of I we have degQ1 = (I − 1)/2 and degQ2 = (2L− I − 1)/2.

Before considering arbitrary values of L let us restrict ourselves initially to the particular
case L = 7. In table 1 we list the predicted degrees of the sine polynomials Q1 and Q2. We
underline pairs Q1,Q2 which satisfy the inequalities (64) and in the last column of this table
we present the eigensectors where we expect to find the predicted simple energy levels.

First of all we see that only odd I leads to a ‘physical’ solution. This fact is consistent
with the results of our ‘experimental’ observations formulated in conjecture 1.
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Table 1. Degrees of the polynomialsQ1 andQ2 from the possible solutions for L+ 7. The special
solutionsQ1spec andQ2spec are given by (65) and the general onesQ1gen andQ2gen are discussed
in the text.

I degQ1gen degQ2spec degQ1spec degQ2gen sector

0 1 0 7 8 —
1 0 1 6 6 (0, 1, 6)
2 2 2 5 7 —
3 1 3 4 5 (1, 2, 4)
4 3 4 3 6 —
5 2 5 2 4 (2, 2, 3)
6 4 6 1 5 —
7 3 7 0 3 (0, 3, 4)

We see further that for small I the ‘physical’ solution is a pair consisting of a general
solutionQ1gen and a special oneQ2spec. For odd I = 2k+1 we have degQ1gen = (I−1)/2 = k
and deg Q2spec = I = 2k + 1. Inserting these formulae into inequalities (64) we obtain
k � k + 1 � L− 2k − 1. For L = 3n + l (l = 1, 2) we obtain the upper boundary for k:

k � n +
l − 2

3
. (67)

On the other side forI large enough we combine a special solutionQ1spec, which has degree
L−I = L− 2k− 1, and a general oneQ2gen, which has degree (2L−I − 1)/2 = L− k− 1.
Inequalities (64) become L − 2k − 1 � k � k + 1. Taking L = 3n + l (l = 1, 2) we obtain
now the lower boundary for k:

k � n +
l − 1

3
. (68)

There are no holes between (67) and (68), so we have a ‘physical’ solution for every odd
I and the corresponding energy levels have to be in sector (k, k+ 1, L−2k−1). This explains
conjecture 1!

The case L = 3n is more complicated and we did not derive similar results.

6. Summary and conclusions

Although the exact integrability is a property independent of the lattice size, the exact solutions
of the associated BAEs for finite chains were known in very few cases. The XXZ chain at
the special value of the anisotropy � = (q + q−1)/2, q = exp(i2π/3), is one of these
examples. Motivated by this result we made extensive numerical calculations for the SU(3)
generalization of the XXZ chain, namely the SU(3) Perk–Schultz model, also at the special
anisotropy q = exp(i2π/3). Surprisingly, as we stated in section 3, the numerical results reveal
that many of the eigenenergies (not all of them) are expressed as combinations of simple cosines
and, apart from some selection rules, are quite similar to the energies of a free-fermion chain
(or XXZ at � = 0).

Our numerical results indicate the five conjectures presented in section 3. The first two
conjectures concern the periodic quantum chain and give the exact expression for the energy
and momentum of several eigenfunctions. In several sectors the lowest energy value is also
predicted. In order to explain these results analytically we present in section 5 a set of BAE
solutions that are consistent with the conjectured energies. However the set of solutions
we obtained is larger then the conjectured one. This implies that some of our solutions,
although having non-coinciding roots, are unphysical, corresponding to a zero vector, since
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the associated energy is missing from the eigenspectrum. These missing BAE solutions appear
in the sectors (n0, n1, n2) not satisfying the bound n0 � n1 � n2 � 2L/3. From the functional
relations derived in section 4 we were able to explain at least for the casesL �= 3n the selection
rules appearing in conjecture 1. In the case L = 3n the degrees of the trigonometric solutions
of the functional equations are more difficult to predict and we could not explain conjecture 1.

The last three conjectures concern the eigenspectra of the Hamiltonian with the quantum
symmetry SU(3)q , i.e. the free-boundary case. These conjectures show no selection rules, in
contrast with the periodic case. Again in this case we present a set of solutions of the BAEs
sharing the same energies as those of conjecture 3. The functional relations in this case are
more complicated and we leave this analysis for a future work.

Finally it is interesting to mention that the finite-size corrections obtained from the
conjectured eigenenergies of section 3 give us some conformal dimensions of the underlying
conformal field theory (CFT) governing the large-distance physics of the model. As a
consequence of the conformal invariance of the infinite system these eigenenergies [13] should
behave as

E = e∞L +
π

6L
vs(12xo − c) + o(L−1), (69)

in the periodic case, and

E = e∞L + fs +
π

24L
vs(24xso − c) + o(L−1), (70)

in the open-boundary cases. In the above expression e∞ and fs are the energy per site and
surface energy in the bulk limit, vs is the sound velocity, c is the central charge and xo, xso are
the conformal dimensions governing the power-law decay of correlations in the periodic and
open-chain cases.

In the periodic case, conjecture 2 gives the asymptotic behaviour for the lowest
eigenenergies

E = e∞L− π

6L
vs(−2) + O(L−3) for L = 3n, (71)

E = e∞L− π

6L
vs

2

3
+ O(L−3) for L �= 3n, (72)

where e∞ = −(2/3 +
√

3/π) and vs = √
3 can be inferred from the lowest eigenenergy with

momentum 2π/L of conjecture 1.
The underlying U(1) ⊗ U(1) CFT governing these quantum chains is expected to

have a central charge c = 2 and when formulated in the torus should have the conformal
dimensions [14]

x(n1, n2;m1,m2) = xp(n2
1 − n1n2 + n2

2) +
1

12xp
(m2

1 +m1m2 +m2
2), (73)

where xp is related to the compactification ratio and n1, n2,m1,m2 are expected to be integers.
Assuming c = 2 in (69) and comparing with relations (71) and (72) we obtain for the predicted
lowest eigenenergies the associated dimensions x = 1/3 for L = 3n and x = 1/9 for
L �= 3n. From (73) these dimensions can be identified with x(1, 1; 0, 0) = xp = 1/3 and
x(1/3,−1/3; 0, 0) = xp/3 = 1/9, by taking xp = η/2π = 1/3. The fractional values in the
last case occur because the ground state for lattices with sizes L �= 3n does not represent, in
the bulk limit, the true vacuum of the CFT, since it contains topological defects.

In the case of open boundaries conjecture 5 gives us for the ground state

E = e∞L + fs − π

24L
vs(−2) + O(L−3), (74)
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where e∞ and vs have already been obtained in the periodic case andfs = 3/2. Comparing (74)
with (70) we obtain c = −2. This can be understood since the quantum chain with open
boundaries is SU(3)q symmetric, with q = eiη, η = 2π/3, and the expected [15] conformal
anomaly in this case is c = 2 − 24/m(m + 1), where m = η/(π − η) = 2. Similar analysis
can also be performed for the excited states.
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